~ Ab-A189 199 IPC FOR MODULAR SOFTWARE REQUIRES A THIRD PARTY CONNECT 1/

) ROCHESTER UNIV NY DEPT OF COMPUTER SCIENCE
S ﬂ FRIEDBERG JUN 87 TR-228 DACA76-835-C-080801
UNCLRSSIFIED FrG 12/7

I
|
\
|
|
|
|
H
!

.
"‘l’ -

P e

“ua i

o -
> g o 3

PEE
A A

-.l- b
R NERR

dl‘.‘/‘"l‘l“

e
RN
. ‘e

e e s o
el
‘I" l._l'l.‘

AR

PRLP AP

oy O) °
R BT A TS
l L) \ ~

\
K QLN
Wgt.ﬁ'ﬂ«g’iﬁﬁm& ‘;

TR
'"g‘é umj

ol THN AR

L

,.“.‘1"..

|‘0 Q'l

T

L)

Y
e

ety

e 2o 1l v,

P N

4

g

t '

[S

Pl
o
B
sl
i #® | T e
. P "

At

.

»

s
Y
v

,'f',',(""'""

sy

1 -
s
e
- -
LT G . R
. e = T
z N >
- N
&L ..
:. - PR T
. v

B i e

IPC for Modular Software
Requires a Third Party Connect

Stuart A. Friedberg
Computer Science Department
University of Rochester
Rochester, New York 14627

TR 220
June 1987

N s,

Deportment of Computer Scn'ence"
. University ‘of Rochester 77"
Rochester New York 14627

‘, 87 12 22 006

DISTRIBUTION STA’I'EMENT A
Approved for public release;
Distribution Unlimited

o e m———

WSS BN SRR M

IPC for Modular Software
Requires 2 Third Party Connect

Stuart A. Friedberg
Computer Science Department DTI C
University of Rochester ELECTE
Rochester, New York 14627

JAN 1 51988
TR 220 i
June 1987 H
Abstract

Reconfiguration. on-line maintenance. load balancing. and similar operations on complex software
require (among other things) dvnamic binding of communicating peers, so that modules can be installed
and removed in a framework of other functional modules. A binding may take the form of TCP/IP
protocol connection. remote procedure call server location. shared memory address resolution. or object
handle resolution. depending on the underlying communication mechanism. However. the need for
abstraction and modularity 1s independent of the particular IPC mechanism(s) being used. A module
should not need to know how it is used. specifically. how it is bound together with other modules to
implement a more comples function.

Therefore. the bindings between two modules 4 and B should in general be created and destroyed by
a third module €. We call this facility a third party connect. The module C should not have to have an)
particular relationship (other than authentication) to modules A and B in order to dynamically connect and
disconnect them. I[n particular. it should not have to be one of 4 and B, be a common ancestor of them. or
have an existing binding to them. Similarly, neither 4 nor B should have to take an active part in
establishing or tearing down bindings.

Most IPC mechanisms either do not support third party connects at all (e.g., TCP/IP. Accent), do not
allow dynamic reconfiguration (e.g.. UNIX), or give binding authority to only a fixed internal element of
the system (e.g.. remote procedure call). Designers of future network communication protocols and
interprocess communication mechanisms should provide for more flexible session layer features in general.
third party connect in particular.

This work was supported in part by U.S. Army Engineering Topographic Laboratories research grant
no. DACA76-85-C-001. We thank the Xerox Corporation University Grants Program for providing
equipment used in the preparation of this paper.

v T A]

g S S

W

t

3 A N Ti N Tt A (e A
" d &S .=»'b OO b. %)‘5:"1: ..“ !-"lr' X ‘Q.‘ . UL 'a.‘i’s.!‘v,“zv!“‘

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

| REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

I BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO| 3. RECIPLEN T TA R
TR 220 //f? 7

4. TITLE (and Subtitie) S. TYPE OF REPORT & PERIOD COVERED

i IPC for Modular Software
Requires a Third Party Connect

Technical Report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(S)
Stuart A. Friedberg DACA76-85-C-0001
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

. E
Computer Science Department AREA & WORK UNIT NUMBERS

University of Rochester
Rochester, NY 14627

11. CONTROLLING OFFICE NAME AND ADDRESS 2. REPQRT DATE
Defense Advanced Research Projects Agency June 1987
1400 Wilson Blvd. 13. NUMBER OF PAGES
Arlington, VA 22209 11

14. MONITORING AGENCY NAME & ADDRESS({f different from Controlling Office) 15. SECURITY CLASS. (of this report)
Office of Naval Research

Information Systems Unclassified
Arlington, VA 22217 Tsa DECLASSIFICATION DOWNGRADING

16. DISTRIBUYION STATEMENT 7of thia Report)

i
L Iustifiecosdicn
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it difterent from Repon)_ﬂ

Distribution of this document is unlimited. Accession For !
l NTIS GRA&I i
. DTIC TAB 0
. Unannounced | 5

3 Ry. I e
¢ Digstrituay o/
i
D Avalluvdse
18. SUPPLEMENTARY NOTES : oLl
Cist . -t 1Cc \

None

19. KEY WORDS (Continue on reverse gide if necessary and iden*ify by block number)

Binding, protocel connection, inter-process communication, third party
connect , reconfiguration, modularity, survivable applications,
distributed software

20. ABSTRACT (Continue on reverse side if neceseary and identify by dlock number)

Reconfiguration, on-line maintenance, load balancing, and similar operations
on complex software require (among other things) dynamic binding of commu-
nicating peers, so that modules can be installed and removed in a frame-

work of other functional modules. A binding may take the form of TCP/IP
protocol connection, remote procedure call server location, shared memory
address resolution, or object handle resolution, depending on the underlying
communication mechanism. However, the need for abstraction and modularity is
independent of the particular IPC mechanism(s) being used. A module should

DD , n", 1473 eoiTion oF 1 NOv 63 15 OBsSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

¥ A N e v Y ot L
P .'x...'.‘.’ OO R NRR A S A R R R T ""l‘h AABSIRERLE A B .'Hln r GG N SRR]

-
o

Bl A A0 A 8t Bt A i il Ao aih et ale add odhakd o

Y >
T
"-

-
2
i

2
" 20. ABSTRACT (Continued)
b N'~‘

¥
s ~'not need to know how it is used (specifically, how it is bound together with

, other modules to implement a more complex function).
~ _f\:

:j:_ Therefore, the bindings between two modules A and B should in general be created
s and destroyed by a third module C. We call this facility a third party connect.
Ay The module C should not have to have any particular relationship (other than
C) authentication) to modules A and B in order to dynamically connect and disconnect
e them. 1In particular, it should not have to be one of A and B, be a common
N ancestor of them, or have an existing binding to them. Similarly, neither A nor
o B should have to take an active part in establishing or tearing down bindings.
LSRN ~
.;3:~ Most IPC mechanisms either do not support third party connects at all (e.aq.,

- TCP/IP, Accent), do not allow dynamic reconfiguration (e.q., UNIX), or give
AN binding authority to only a fixed internal element of the system (e.g., remote
o procedure call). Designers of future network communication protocols and
N interprocess communication mechanis.is should provide for more flexible session
o layer features in general, third party connect in particular.

o

e

Yoo

N4
.\i;

,\

)
|
2
=
‘b J--

2
b
N
YO
1 \ﬁ'-:.
" :. ..:1.,
e
il
S
@
~i
o
AR N
N,
AR
=
S
B
R " -
N

e —
L IV
3

Tt g " - R N I I N N) VRS T R \'-‘r‘“- ‘| ; "'w Cpor i
o« . { { SN 0 Y
d v .n'l' & ‘ 0 ‘n '.l.- AN Py 0‘!"‘.-"‘-’.‘: ‘n'i'-’i 1) -'0‘.

-

R
)
o Many investigations of distributed programming start with a particular interprocess
- communication mechanism and later explore its impact on structuring distributed

4,

programs. The University of Rochester Hierarchical Process Composition project (HPC)
began with a particular structuring mechanism, and explored its impact on interprocess

-
f;z communication [L.eF85b]. [l e¢F85a). Some of the results are quite general, and here we
® report an observation that applies to most software systems that emphasize abstraction o
o modularity and allow dynamic reconfiguration.

) Most modern software systems build up complex applications from a collection of
[0 more-or-less independent modules implementing different functions. Tn various systems
. such modules might be Ada packages, Eden object, heavyweight processes, etc., and the
‘?i;; intermodule (interprocess) communication mechanisms used to bind them together
ko obviously vary as widely. Although our observations took place in the specific context of

processes and transport protocols, we will use the generic terms module and IPC

pr mechanism,

3 There arc three distinct areas of responsibility in interprocess or intermodule
"'E communication: signalling, composition, and implementation. These functions take
i different forms depending on the communication mechanism being used, but in general.

signalling defines the interactions between communicating peers (what), composition

-'_.‘.' defines which peers communicate (with whon), and implementation prosvides the mediu
i.;f of communication (with what).

.:,:' We will not have much to say about signalling, except that it is a completely distinct
S function from composition. The interesting observations are, in a system supporting
._) abstraction and reconfiguration:

e (1) Composition is distinct from implementation.

':; (2) Composition is an incremental and distributed function.

J‘ (3) Implementation requires a third party connect.

Oy

-:-:' 2. Signalling. Composition, and Implementation are Distinct Functions

:ﬂ It i1s important to distinguish sz’gna//ing, composition, and implemgnzau’on. A
;j signalling operation 1s an act of communication, like sending a message, writing to a ﬁle.
o or invoking an operation on an object. A signalling sequence defines the basic behavior
! of a process. Composition defines how basic behaviors are combined into a more
. complex application, by controlling the communication paths among its components.
N Implementation establishes the physical media needed to support the logical paths
i determined by composition.

P While the correspondence is not exact, in terms of the ISO seven-layer model.
3'.;‘.' signalling is user invocation of the transport layer, composition is user invocation of the
Ko session layer, and implementation is carried out by the session layer. Tables 1 and 2
o illustrate the signalling and composition operations, respectively, for several interprocess
e communication mechanisms.! These Tables are meant to be suggestive, rather than

1

- -,

e A il (B A A N N R L » ..l .I.

N e N N 3 I N e A AP T et e e e Tt R N L e L T AT N
B R R L tat I RO L N T I e S B Tl 2 S R A

A
R A LR b L L

-
-
-

Cowe
N
. Pl

.rt Mechanism Signalling Operations
: CONIC send, receive, reply
R Hydra send, receive, reply
‘v. RPC call, accept-reply
; socket various, usually send, receive
memory read, write, P, V, fetch-and-phi
B file read, write, seek
N mailbox deposit, withdraw
= ‘ link send, receive
, filter send, receive
\ Linda insert, remove, retrieve, eval-and-expand
i Table 1.
._. Mechanism Composition Operations
EZ CONIC link, unlink
: Hydra connect, disconnect
3 RPC bind
socket bind, listen, accept, connect, disconnect
memory link, load, address
file create, open, close, inherit
X mailbox create, name
link create, transfer
filter set-filter
‘;’ Linda set-pattern
Table 2.
exhaustive.
As shown by the Tables, different mechanisms generally have different signalling
. operations. For example, signalling with a message passing mechanism involves deciding
g ! Descriptions of these mechanisms may be found in: CONIC: (KMS83]; Hydra: [WLHS81]: RPC:
0 [Lis80}. [Nel81]: socket: [CCCT0}; mailbox: [Bri73). [BFL76]. [HLGT8). [JCD79]: link: [BHM77). (RaR81].
[ZwL83). [ACF87] (Accent terminology for link is “port”. not to be confused with the Hydra and CONIC
- ports); broadcast filters: [FFH73]. [Ary81]. [KeS84]. [GKZ8S]: Linda: [Gel8S].
i
A 2
‘G4
q

-

“ay ua

- L N e
A Un Ut) LN
"" ! l".‘ 'A..L,.n "‘l' .v';t"‘é?’ q’i.:i‘.v'

RO o) v <o 1
AT M N OO AU RE M P v

. “ui o o B .
\ Iy - Rulhnt e AP giad Bab fiok Mok i it Dol A8 ‘B d-A 28 4\ and e Aia A I'Y“V!‘VYWT

oY
AN

™

when to send and receive messages, and what the contents of messages should be.

-.; Signalling with a semaphore mechanism involves deciding when to wait (P) and signa!
o (1. Signalling with a remote procedure call mechanism involves deciding when to call
V] ' procedure, when to return from a call, and what the arguments and return values should

&5 be.

ey, The compositional operations for these three example mechanisms are deciding
e whom to send a message to (whom to receive from), deciding which processes have access
L to the semaphore, and deciding which client stubs are bound to which server entries,

"\‘:: respectively. The implementation of conventional interprocess communication
:) mechapisms 1s usually triggered directly by composition and managed by the host
operating system.

'{.:-' Dividing an application into many modules reduces complexity by providing man:
o small, specific interfaces with a small number of possible clients. Interfaces are usually

b talked about as static specifications, but it is a module’s behavior or pattern of

interactions that is important, not its entry points and arguments. Each module expresses

\:. a behavior through its signalling with related modules, and in systems that enforce

e abstraction. this behavior will not depend on the identits of a communicating pecr

;:Z: module. That is, signalling should not depend on composition.

5.:: Dynamic installation, replacement. or removal of a module from a running system

9 requires (among other things) the ability to change the bindings between communicating

L modules. Upgrading a system on-line requires. for example, the ability to remosve all
oY communication paths 10 an outdated module, remove it, create a replacement. and then
-~ create communication paths from the old modules peers to the new module. To provide
general purpose tools for reconfiguring applications on the fly, composition should not

{ require the active cooperation of the affected modules. That is, dynamic composition

should not depend on signalling. or on the identities of the composed modules.

- We are concerned mainly with how processes can be dynamically reconfigured to
- suppont flexible, long-lived. survivable applications. This means we are not interested in

' signalling per se. but very interested in composition as a logical operation and
- implementation as a physical operation. The HPC project has a specific notion of how to
AEN form logical communication paths between processes and groups of processes. but our
N observations will be phrased in terms of more general systems.

S

3. Composition is Incremental and Distributed

N Signalling, composition and implementation are not just conceptually different

- activities. If distributed programming is to incorporate more complex abstractions than

. the tnvial client-server model, these activities must actually be carried out by different

agents. We argue that composition must be an activity distributed among multiple

@ agents. Further, the composing agents are generally nor the same as the signalling agents.

;ffi We are interested in software systems with three significant properties. An
o interesting system (1) allows communication with a group of related modules (processes)

hoS as a group, (2) enforces the abstraction of a group, and (3) supports non-trivial internal
,:j'I' 3

3

d

e

e L S T L S L e e e s e s

' . " - - vy e v 3 TV W TN T . Aty ate 0o ois 224
4

3:

. structures in a group.2 In such a system,

38 (1) logical communication paths are naturally divided into several segments, on¢ for
f each group that the path involves, and

- (2) composition is a distributed activity.

- Readers who object to "path™ as too suggestive of physical routing are encouraged to
‘o substitute "binding decision”. The difference between binding decision and binding is
- just that between composition and implementation.

There is no shortage of interesting systems. The following list of examples could be
. doubled or tripled in length easily. Allowing for vagaries of notation, Figure 1 is a
natural ilfustration for the kind of nested structure that can be described, and in some
cases implemented directly, by each of the example systems.

b e distnbuted systems —
CONIC [KMS83], HPC {LeF85a]
S e programming languages and environments —
K-\ DPL-82 [Eri82]. Pict [GIT84]. PRONET [LeM§2]
‘ e system design, analysis, and modelling tools —
DREAM [Rid81], GRACE/CS [HaKRg4], SADT [Ros85]. SARA [FFRS86]. SREM
[Alf85]

The direct paths between modules at the same level of abstraction, combined by the
paths inside modules that connect implementing children to the external interfaces of the

i
R Pump Controller Control System Instrument Room
~
s

. Sensors

I Sensors

‘D Flow ;-:H Console

N Loop JAHH Control

:: Control

£ Pump Analysis Hard

: Driver p q Log

”
v
'
¥,
1gid -

; Figure 1.

e g

Z Either nesting of groups or designating specific modules to receive communication addressed to a
group satisfies property 3. Systems with only single level of process grouping and uniform internal
treatment of processes within a group (e.g.. mulucasting). such as V [ChZ85). lack property 3.

.

f-

5 4

¢

Od

W

i)

module, naturally produce incremental compositions. In most cases, different agents will

:,Pg" be responsible for the design or run-time management of different abstractions, leading 1o
'\::: distnbution of composition, as well.
o Even simpler and more common systems demonstrate incremental composition.
S Consider a system offering only one service with multiple server processes, a file service.
- say. Fvery process either belongs to, or i1s a client of, the file service. and the
::.{'.' multiprocess imiplementation of the file service is transparent to the clients. Befurc 4
,‘:: client and a sen ST Process communicatc‘ the g:lient must decide to access the file service
N and some agent in .the file service must decide Wh.lCh SEerver process is to 'handle the
“ clilent s request. Neuh;r the chient, nor the file service agent, can decide unilaterally to
R bind the specific client and server processes. The logical path between the
f.;- communicating processes has two segments. (There are two independent contributions to
o the decision to bind that particular pair of processes).
:" Not all our example systems support reconfiguration, and static structure avoids
run-time composition altogether. Composition is then typically an activity of human
designers. while implementation is carried out by configuration software. Signalling
Y remains strictly a run-time activity. However, static structure makes the question of
:_:l'j distributed and incremental composition a moot issue of design methodology. W
N suggest that in successful methodologies composition remains distributed and increment:!
® when the metric involves separation among specification modules rather than process
N groups or nested modules.
'\.:x
E*: 4. Efficient Implementation Requires a Third Party Connect
s Robust. flexible. distributed software will be, and is, designed as applications with
i several levels of internal abstraction and significant, long-lived, internal communication
e patterns. To allow designer and muintainers run-time access to the relationships amaong
oo an application’s components. the logical grouping and communication paths should bc
~§;:j explicit and persistent. However, while this useful structure should be kept at run-time.
O it 1s not necessary or desirable 1o use all of it when manipulating physical resources like
processes and communication channels.
-~ CONIC. HPC. PRONET. and the other examples operating at run-time provide «
:j:I-j value-added service by supporting intermediate levels of abstraction and incremental
;:Z-' definition of communication paths. If all the purely abstract structure is eliminated by

a erasing the abstract grouping and throwing away all the incomplete paths, the remaining
oL structure consists of real modules (processes) and real communication media. Such an
elimination 1s illustrated in Figure 2. Ignoring abstract structure in this way has no effect
o on the behavior of the system. No real modules, or paths between real modules, have
o been removed.

So, on the one hand, there is the user model with lots of convenient abstraction, and
on the other, there is the physical environment with only real pieces. Some agency, for
convenience we will call it an operating system,’ translates the incrementally composed
logical paths of the user model into the appropriate physical communication channels.

P e e e .
s ~f\f“"\‘l’." e N S A N AL T AT e J
S M\i’&&;{\w}.{c_x{dﬁ«

s s
B N VA T O RN ICI Y,

), 3 ey - O YWy " - Al 4% TR P EW T UTW UN Wy r——"
L}

2
‘! s
;_!ii
o [
Ny P
e | 9 Concrete G
. -_—
P , -
::; Abstract
\-/'
7
- Figure 2.
N
- This is the third area of responsibility: implementation.
Clearly, the only acceptable implementations are those that create physical mediu
K directly between the real communicating modules, without additional overhead, and
regardless of the length and complexity of the logical path joining them. This is
- practically a definition of a third-party connect. After the operating system has stripped
_3:Z away the user level abstractions, it must be able to connect and disconnect direcily any of
> the modules under its aegis. This facility is critical for efficient implementation of all
multiprocess software that emphasizes abstraction: Ability to bind (and unbind) modides
~ with a commurication path may rest with an agency that never was, is. or will be bound to
" those modules or associated with that path, In other words. it must be possible to connect
’ and disconnect two processes from a third process.
 C -
- 5. Discussion
{
:_-.‘v- S.1. State of the Art
- It is imperative 1o abandon IPC mechanisms where the decision to connect processes
o must be made by the processes being connected. It is unreasonable to develop complex
- multiprocess software with such mechanisms. because they make it impossible to
introduce the appropriate use of abstraction. This is, sadly, the state of most internetwork
Z:Z;' transport protocols. like TCP/IP, where communicating processes have to explicitly
Lo cooperate in establishing connections. (To be fair, XNS Bulk Data Transfer i1s an
o internetworking protocol designed from the beginning to support third-party connect
2’ [Xer84].)
o Another inadequate tool is inheritance of communication paths from a common
;::.‘; ancestor. This is the mechanism used by the UNIX shells to implement pipelines, and in
X principle, more complex patterns of communication between processes. It does supporn
i'.;' modularity and abstraction, but unfortunately does not allow for later reconfiguration of
.®; an application, even to replace a failed process.
':::;: ‘3 This agency may p.rovided in any number of different ways, depgnding on the extent to which
b, applications can be dynamically reconfigured. In the examples we have cited, the agency is variously the
= operaung system. a privileged server process. a run-time library, a system generation utility, and a compiler.
::;::
'.::_':'
('. : 6
e
04
7 X
5 B
'\-‘ R R R T A AU RSy

pied

P

a'e

"?i The third common technique is most clearly illustrated by link systems, where to
e create a path between processes 4 and B. process C must already have a path to each of
N them. Links support modularits and reconfiguration, but require the active cooperation

A of the processes being reconfigured. In particular, process C can volunteer a new path,
X p . ! pa

O but can not cause processes 4 and B to stop using an old path. (A link system allowing

, the owner of a hink to transfer receive rights and to delete a link even if nghts are held
NG by other processes would not have this deficiency.) Link systems usually also use
inheritance to get over the bootstrapping problem of providing a process its initial paths.

.::;;; None of these techniques, self-composition, inheritance, or links, is an adequate tool
| X for the efficient, dynamic reconfiguration of modular software, yet there is nothing
i fundamentally difficult about providing third-party connect, or similar functions. For
;-_';:-j example, the portion of the TCP/IP protocol that is concerned with setting up and
\j_jl; tearing down connections (session layer issues) is clearly defined. It would be
'5-2; straightforward to modify TCP to negotiate the connect and disconnect subprotocols with
(generally) a third party. The server "passive mode” should be separated from the
5 socket/address multiplening facility.
SE8E [t 1s no coincidence that modern system design and analysis tools emphasize
S abstraction and modularity. Interesting systems in the sense of Section 3 will become
-‘;I-': only mare common. Clearly. design methodology has outstripped the abilitics of 1PC
mechanisms to support it efficientls. The reason is perhaps historical: software designers
;'_'f are painfully aware of the benefits of modularity and the pitfalls of the expedient
[solution. IPC designers arc often trained in a hardware culture, specifically the long-haul
o circuit switching tradition, with a concern for performance and traditional services.
However. we can do a great deal more with [PC than emulate telephones and terminals!
{ Desigriers of new network protocols and IPC mechanisms will be doing application
T designers a disservice if they do not include session issues in general. and third-party
::ZE::Z connect in particular. in their considerations.
o
N .2, Authorization
D) Guven the potential for unilateral. uncooperative change (of communication paths).

e the question of authorization and permission naturally arises. To some extent, the three
' techniques just discussed are limited precisely because they want to limit changes in
composition to implicitly authorized processes. The HPC project provides a specific
< answer to the problem of authentication and authorization, but we do not attempt a
general answer!

" Instead. we will note that there are at least two places where the permissions for

:'_31{1 created or destroying a connection between processes can be checked. First. as
applications incrementally build up logical paths, their permission to modify the
P corresponding pieces of (abstract) structure can be checked. Second, as the implementing
agency attempts to create or destroy a real communication channel, its permission to
- modify that channel can be checked.

A The designer of internetwork transport protocols will be primarily interested in the

S latter case. Consider a modified TCP/IP. When a would-be implementing agent

e e e e e T e T e e AT e e e T
T T O o
A o ST S T e e T -,
IR AN S G AP Y RS T PO N I A NP PPy

..'.‘ P LR Laa At als s el aba-aaatolie. ke ol MG LA ke i ald 480 b Al aa a-a g e x4 L . —_—

RO

.{

& . . .

oy attempts to negotiate a change to a connection, the protoco! software can authenticate the
N ": agent. While the [P and ISO internets lack practical authentication services, the Xerox
N corporate internet has provided them for several years. In this way, the transport
¥ protocol providing the third-party connect needs to know nothing about the structure of
- the applications in which it is being used, and the worker processes in an application
a3 simply have to agree on a common implementing agent and so inform the protocol’

I

o 5.3. Why Persistent Logical Conncctions (Compositions)?

o

) The primary objection to communication based on explicit, persistent connections 1s
g traditional, and based on the cost of establishing and destroying switched circuit virtuel
*.f circuits in the telegraph and telephone industries. To a large extent, this limiting
"'_:: technology has been left behind, even by those industries, but stronger responses te the
P claim of excessive cost can be made when composition is separated from implementation.
e First, changes in logical composition only have an effect on media when a completc
x:?:-; logical path is created or destroyed. Therefore, many, if not most, reconfigurations will
affect only abstract structure and incur no cost in set-up or tear-down of physical media.
LS -)
:\ Second, manyv [PC mechanisms are fundamentally connectionless. Consider
PY datagrams where “connecting” simply means determining the destination address of an
T outbound datagram. Establishing a communication channel incurs no cost untl a

datagram is actually sent. and then no greater cost than sending any other datagram.
Thus. by separating composition from implementation, a software designer and

: maintainer can have the abstraction of explicit, persistent connections with the
i performance and cost of the most appropriate communication mechanism(s).
+ ':.""
[<,
e
; ;r:
e

P

T

v

AR
A

'}‘vfw
P pog - o=, - .
PRV R RV LN S RS A P T
R) f ») “~
-“.,q .o'\, \ *ﬂ' ’ M ¥ %

.';'._;;.';i._'f Lo S S S ’\"4\ .’1-#-; I S G C L PR ~‘”, T "'\"f» O O O e
: SN & Nl E L MGA o XN Ca e ¢ o “ by N LY]
A " S 2 L LAO A e ST AN L TR SO Kb e o)

Ll e)

. p _

a4, 5, [N -,' . a . "1.:-"':. > _'-.",' ':.

-

N

AY]
I.‘
-

I R T R R O N P AW W WY WO worw o W v vy

6. References

[AlfRS] M. W, Alford. "SREM at the Age of Eight: The Distributed Computing
Design System™, Comiputer 18, 4 (Apnl 1985), 36-46.

[ACFST] Y. Ansy, H. Chang and R. Finkel. “lnterprocess Communication in
Charlouc™. TFEF Software 4.1 (January 1987), 22-28.

[Ann8l] A K. Anva “Super: Encapsuliuted Autonomous Distributed Computations orn
an Abstract Architecture”, Ph.D. Thesis, University of Rochester, July 1981

[BFL76] J. E. Ball. J. A, Feldman. J. R. Low, R. Rashid and P. Rovner, "RIG.
Rochester’s Intelligent Gateway: System Overview”, [EEE Transactions or:
Sofiware Engineering SF-2, 4 (1976), 321-328.

(BHM?7] F. Baskett. J. H. Howard and J. T. Montague, “Task Communication in

Demos™. Proceedings 6th Symposium on Operating Systems Principles, West
Lafavette, Indiana, 16-18 November 1977, 23-31.

(Bri73) P. Brinch-Hansen. Operating Systems Principles. Prentice-Hall, Englewood
Cliffs. New Jersey, 1973

[CCC70] C. S. Carr. S. D. Crocker and V. G. Cerf, "Host-Host Communication
Protocol in the ARPA Network™, Proceedings AFIPS Spring Joint Compuicr
Confererice. Atlantic City. New Jersey, 5-7 May 1970, 589-597.

[Ch7s3) D. R. Cheriton and W. Zwaenepoel. "Distributed Process Groups in the V
Kernel”, Technical Report 85-13, Department of Computer Science, Rice
University. February 1985,

[Fris2) L. W. Ericson, "DPL-82: A Language for Distributed Processing™.
Proceedings 3rd [nternational Conference on Distributed Computing Sysiems.
Ft. Lauderdale. Florida. 18-22 October 1982, 526-531.

[EFRS6] G. Estrin. R. S. Fenchel. R. R. Razouk and M. K. Vernon, "SARA (System
ARchitects Apprentice): Modelling, Analysis and Simulation Support for
Design of Concurrent Svstems™, [EEE Transactions on Software Engineering
SE-12.2 (February 1986). 293-311.

[FFH™3] D. J. Farber, J. Feldman. F. R. Heinrich. M. D. Hopwood. K. C. Larson. D.
C. Loomis and L. A. Rowe. "The Distributed Computing System’,
Proceedings 7th Annual IEEE Computer Society International Conference,
February 1973, 31-34.

[Gelg5] D. Gelernter, “Generative Communication in Linda™, Transactions on
Programming Languages and Systems 7, 1 (January 1985), 80-112.

[GIT84] E. P. Glinert and S. L. Tanimoto, “Pict: An Interactive Graphical
Programming Environment”, Computer 17, 11 (November 1984), 7-25.

[(GKZ85] R. Gueth, J. Kriz and S. Zueger, "Broadcasting Source-Addressed Messages ",
Proceedings 5th International Conference on Distributed Computing Systems.
Denver, Colorado, 13-17 May 1985, 108-115.

X

-~
o
Y

[HaK84] M. Harada and T. L. Kunii, “A Recursive Graph Theory as a Formal Basis
for a Visual Design Language”. Proceedings [EEE Computer Sociel

l' ’
AN

. Workshop on Visual Language. Hiroshima, 6-8 December 1984, 124-135.
‘ [HL.G78] R. C. Holt E. D. lazowska, G S. Graham and M. A. Scott, Structurc!
NS Concurrent Programimiing with Operating Systems Applications, Addisor-
e Wesley, Reading. Massuchussetts, 1978,

:;.':j; [JCD79] A. K. Jones, R.). Chansler. 1. Durham, K. Schwans and S. R. Vegdah!.
~~ "StarOS. A Multiprocessor Operating System for the Support of Task
"-; Forces™. Proceedings 7th Symposium on Operating Sysiems Principles, Pacific
f- Grove, California, Dec 1979, 117-127.

'ﬁ'
o [KeS84] J. Kepecs and M. Solomon, "SODA: A Simplified Operating System for
W Distributed Applications”, TR 527, University of Wisconsin - Madison.

January 1984,

e [KMS83] J. Kramer, J. Magee. M. Sloman and A. Lister. “CONIC: An Integrated
;-_::j Approach to Distributed Computer Control Systems™, /EF Proceedings 130-
Lo E. 1 (January 1983), 1-10.

{LeMS82] R.J. LeBlanc and A. B. Maccabe. “The Design of a Programming language
- Based on Connectivity Networks™, Proceedings 3rd International Confererice
e on Distributed Computing Systemis, Ft. Lauderdale, Florida, 18-22 October
o 1982, §32-341.

}.ﬂ [L.eF83a] T.J. LeBlanc and S. A. Friedberg, "HPC: A Model of Structure and Changc
{ in - Distributed Systems™, JEFE Transactions on Computers C-34. 12
: (December 1983). 1114-1129.

[LeF&Sb] T. J. leBlanc and S. A. Friedberg. “Hierarchical Process Composition in

e Distributed Operating Systems™, Proceedings Sth Internationa! Conference on
L Distributed Computing Systems, Denver, Colorado, 13-17 May 1985, 26-34.

A [Ls80O] B. Liskov, "Remote Procedure Call”, Distributed Systems Group Note 64.
o MIT Laboratory for Computer Science, June 1980.
:-:j:i [Nel81] B. Nelson. "Remote Procedure Call”, CMU. Pittsburgh, PA-CS-81-119. Ma\
< 1981. Ph.D. Thesis.

[[RaR81] R. F. Rashid and G. G. Robertson, “Accent: A Communication Oriented
Newmwork Operating System Kemnel”, Proceedings 8th Symposium on Operating
Systems Principles, Pacific Grove, California, 14-16 December 1981, 64-75.

32:;: [Rid81] W. E. Riddle, "An Assessment of DREAM”, in Software Engineering

. Environments, H. Hunke (editor), North-Holland, 1981, 191-221.
-1 [Ros8S] D. T. Ross, "Applications and Extensions of SADT", Computer 18, 4 (April
. 1985), 25-34.

[WLH81] W. A. Wulf, R. Levin and S. P. Harbison, Hydra/C.mmp: An Experimental
Computer System, McGraw-Hill, New York, 1981.

[Xer84)

[ZwL83]

Xerox Corporation, “"Appendix F Bulk Data Transfer”, Addendum la to
Xerox Syvstem Integration Standard 038112, Stamford, Connecticut, April
1984

W. Zwaencpoel and K. A. Lantz, “Perseus: Retrospective on a Portablc
Operating System”™. TR S AN-CS-83-945, Stanford University. Februars
1933,

M

rX &,
t, " "\‘ ‘V'p'v'r

J
N
R
m
>

=
9 >
Sy 20
o9 N
™ og

.Q- - R v . Al . L

W N A S S RS AP SA S ,[WAL,
R A -n"' ::* .f'
I.M ¥y J' J'-".'" “" “" '5 J' -('vf\l‘vf
(A%) '

ERRGC A l'. FIaM A NI ' ‘~ a0y 'o. L2 .‘» .

